伴随着英伟达AI芯片的热卖,HBM(高带宽内存)成为了时下存储中最为火热的一个领域,不论是三星、海力士还是美光,都投入了大量研发人员与资金,力图走在这条赛道的最前沿。
不仅是国际巨头,中国本土GPU厂商,特别是更具前瞻性的几家创业公司,在发展GPU方面也需要研发更具竞争力的技术和产品,而在当下美国政府推出各种限制政策的大环境下,中国本土GPU芯片技术和生态系统建设可以拓展更多思路,将更多先进的技术和理念融入相关产品。在本土企业客户给出更多采用和试错空间的情况下,中国芯片企业或许可以加快追赶国际先进GPU的步伐。
目前,人们对于生成式模型的关注还主要在于以OpenAI和谷歌为代表的人工智能巨头运行在云端服务器的模型,这些模型需要巨大的算力,并且一般运行在GPU上。
在数字化的风潮中,云计算像巨人一般矗立,其脊梁是无数微小而强大的“细胞”——芯片。这些不起眼的硅片,却支撑起了虚拟化世界的庞大体系。而现今,一场由GPU主导的变革正在悄然兴起,它不仅重塑着数据中心的内部结构,更是在推进整个云计算界的地壳运动。
在新的管制规则下,算力芯片的“国产替代”思路将让位于“国产突破”。这次禁运可能会促进资源向AI芯片的颠覆性技术集中。
ChatGPT意外掀起的一波AI革命,带火了AI芯片市场。而英伟达旗下A100和H100两款AI芯片,正是ChatGPT这样的大语言模型的核心动力。
有数据统计,中国当下10亿参数规模的大模型已经超百个。然而行业蜂拥而上的大模型“炼丹”却面临着高端GPU一卡难求的无解题。算力成本高企,缺算力、缺资金也成为了摆在行业面前最直观的问题。
尽管部署大量GPU是扩展算力的最直接途径,但与此同时传统的互联方案还是创造了巨大的I/O瓶颈,严重影响了GPU的性能利用率,导致更多的时间花在了等待数据而不是处理数据上。
人工智能应用通常需要大规模的高性能计算资源,包括GPU和TPU等加速器。因此,数据中心需要具备足够的计算能力来支持这些应用的训练和推理。这意味着数据中心需要更多的服务器和更强大的网络基础设施,以确保高性能计算任务能够顺畅执行。
分析机构CCS Insight今日做出预测,认为生成式AI领域明年可能会面临一次现实检验,其认为,随着“围绕AI技术本身的炒作逐渐减弱”、“运行AI的成本不断上升”以及“对AI进行监管”的呼声增加,未来AI行业可能遇冷,技术发展逐渐出现放缓迹象。
深度学习在机器学习的复杂性方面取得了飞跃。如果结果有错误或不理想,机器学习可能需要在输出层进行人工干预;而深度学习则不同,其可以在没有人工干预的情况下不断学习并提高准确性。多层深度学习模型可以达到惊人的准确性和性能水平。
GPU计算的开源生态越来越繁荣后,也为其带来了巨大的市场空间,Nvidia DGX企业级的深度学习训练平台概念应运而生,为英伟达的显卡和平台销售创造了千亿级市场。