Digital Twin 数字孪生体概念演进

大数据DT
大数据DT
据悉,工业互联网的基础模型和技术依托于数字孪生体(Digital Twin),虽然这个概念产生于军事领域,但很快得到了领先工业企业的认同,并投入大量资源做研究,其中,美国通用电气和德国西门子最为积极。

2345截图20200908083720.png

据悉,工业互联网的基础模型和技术依托于数字孪生体(Digital Twin),虽然这个概念产生于军事领域,但很快得到了领先工业企业的认同,并投入大量资源做研究,其中,美国通用电气和德国西门子最为积极。

由于这个概念比较新颖,同行业人士了解的不多,有必要通过追根溯源的方式做一个介绍。

01、数字孪生起源

1992年,著名的计算机和人工智能思想家,耶鲁大学David Gelernter教授出版Mirror Worlds一书,虽然没有明确提出数字孪生这一名词,但他描述了一个软件定义的虚拟现实世界,和数字孪生概念的内涵基本一致。

2345截图20200908083720.png

David Gelernter教授在书中写道:

什么是镜像世界(mirror worlds)?它们是从计算机屏幕中看到的代表真实世界的软件模型,海量的信息通过巨大的软件通道源源不断地涌入模型,如此多的信息使得模型可以模拟现实世界每时每刻的运动。

02、数字孪生发展

2002年12月3日,密歇根大学Michael Grieves教授在PLM中心启动会上,首次明确提出数字孪生这一概念,他称之为“PLM的一个理想化概念”(图1-17)。

2345截图20200908083720.png

▲图1-PLM的一个理想化概念

他认为通过物理设备的数据,可以在虚拟(信息)空间构建一个表征该物理设备的虚拟实体和子系统,并且这种联系不是单向和静态的,而是在整个产品的生命周期中都联系在一起。

Michael Grieves博士论述数字孪生的书名为《Virtually Perfect》,已有中文版《智能制造之虚拟完美模型》。

2012年,在夏威夷举办的第53届美洲航空航天协会(AIAA)学术会议上,NASA的Glaessgen和美国空军的Stargel发表了一篇文章“The Digital Twin Paradigm for future NASA and U.S.Air Force Vehicles”,完整深入地论述了未来航空航天器数字孪生的理想模型。

该文章对数字孪生进行了严格的学术定义:

数字孪生是飞行器或系统集成的多物理、多尺度的概率性仿真,它使用最好的可用物理模型、更新的传感器数据和历史飞行数据等来反映与该模型对应的飞行实体全生命周期的真实特性。

03、数字孪生应用

2345截图20200908083720.png

数字孪生这一理念创新虽然算不上什么革命性突破,但应该承认,其对制造业数字化的应用深化,凝聚方向性的共识,起到了重要的推动作用。

2011年3月美国空军研究实验室(AFRL,Air Force Research Laboratory)做的一次演讲,明确提到了数字孪生体,是最早的提出机构。

据有限的资料显示,美国国家航空航天局(NASA,National Aeronautics and Space Administration)也在同期开始关注数字孪生体,但后续对数字孪生体体系的构建贡献并不多,反而是美国国防部立刻意识到数字孪生体是颇具价值的工程工具,值得全面研发。

与此同时,美国通用电气在为美国国防部提供F-35联合攻击机解决方案的时候,也发现数字孪生体是工业数字化过程中的有效工程工具,并开始利用数字孪生体去构建工业互联网体系。

在2015年,工业4.0研究院已经对德国工业4.0有了非常深入的研究,开始发现信息物理系统(CPS,Cyber-Physical Systems)不如美国工业互联网联盟(IIC,Industrial Internet Consortium)采用的数字孪生体有效,为了加深对数字孪生体的理解,工业4.0研究院启动了“数字孪生体概念及历史”(Concept and Origins of Digital Twin)的研究课题。

与国内初步接触数字孪生体的行业人士一样,工业4.0研究院首先接触到的是美国研究教授(Research Professor)Michael W.Grieves在2014年撰写的Digital Twin:Manufacturing Excellence through Virtual Factory Replication,虽然Grieves强调这是一份白皮书,但实际上只有6页多的正文文字,总计字数约为3000英文单词。

工业4.0研究院还发现,Grieves在2008年也发布了Product Specification Management(PSM):Enabling Manufacturing Quality,同样把这份正文内容只有4页多的文章称为“白皮书”(Whitepaper)。

在Digital Twin:Manufacturing Excellence through Virtual Factory Replication这篇文章中,Grieves明确指出,他在2003年密歇根的高管培训上提出了(was introduced)物理产品的数字等同体或数字孪生体概念。这个声明被国内一些专家认为是Grieves首先提出数字孪生体概念的证据。

可是,在2014年发布的文章中,“追溯”自己10多年前就有此想法恐怕难以让人认同,如果还毫无书面证据称自己是概念提出者,就更难具有说服力了。

过去30年间,随着摩尔定律导致计算成本指数下降,数值计算方法不断发展,产品创新竞争加剧,建模和仿真越来越可靠,使用范围越来越广,工程师开始畅想一个数字全面替代物理的场景,催生了数字孪生概念的演进。

总结起来,我们心目中的功劳簿如下:

David Gelernter(1992):第一个数字孪生想法的提出者(虽然1992年还显得有些科幻)。

Michael Greives(2002):第一个数字孪生的命名者。

Glaessgen和Stargel(2012):第一个数字孪生的严格学术定义者。

西门子工业软件:第一个数字孪生的倡导者和实践者。

美国国家科学基金会(National Science Foundation,NSF)的Helen Gill在2006年创造了信息物理系统(Cyber-Physical Systems,CPS)的概念,德国于2011年利用该概念提出了工业4.0(Industrie 4.0)。

西门子工业软件在2016年开始尝试利用数字孪生体来完善工业4.0应用,到2017年底,西门子工业软件正式发布了完整的数字孪生体应用模型,成为第一个数字孪生倡导者和实践者(图1-18)。

2345截图20200908083720.png

▲图2-西门子工业软件——数字孪生的倡导者和实践者

数字孪生技术是将带有三维数字模型的信息拓展到整个生命周期中的数字镜像技术,最终实现虚拟与物理世界同步和一致。它不是让虚拟世界做现在我们已经做到的事情,而是发现潜在问题、激发创新思维、不断追求优化进步—这才是数字孪生的目标所在。

数字孪生技术帮助企业在实际投入生产之前即能在虚拟环境中优化、仿真和测试,在生产过程中也可同步优化整个企业流程,最终实现高效的柔性生产,快速创新及上市,锻造企业持久竞争力。

THEEND

最新评论(评论仅代表用户观点)

更多
暂无评论