随着万物联网的趋势不断加深,智能手机、智能眼镜等端设备的数量不断增加,使数据的增长速度远远超过了网络带宽的增速;同时,增强现实、无人驾驶等众多新应用的出现对延迟提出了更高的要求。
边缘计算将网络边缘上的计算、网络与存储资源组成统一的平台为用户提供服务,使数据在源头附近就能得到及时有效的处理。这种模式不同于云计算要将所有数据传输到数据中心,绕过了网络带宽与延迟的瓶颈,引起了广泛的关注。
什么是边缘计算
What is edge computing
近年来,大数据、云计算、智能技术的快速发展,给互联网产业带来了深刻的变革,也对计算模式提出了新的要求。大数据时代下每天产生的数据量急增,而物联网等应用背景下的数据在地理上分散,并且对响应时间和安全性提出了更高的要求。云计算虽然为大数据处理提供了高效的计算平台,但是目前网络带宽的增长速度远远赶不上数据的增长速度,网络带宽成本的下降速度要比CPU、内存这些硬件资源成本的下降速度慢很多,同时复杂的网络环境让网络延迟很难有突破性提升。因此传统云计算模式需要解决带宽和延迟这两大瓶颈。在这种应用背景下,边缘计算应运而生,并在近两年得到了研究者的广泛关注。

图源/网络
边缘计算中的边缘指的是网络边缘上的计算和存储资源,这里的网络边缘与数据中心相对,无论是从地理距离还是网络距离上来看都更贴近用户。边缘计算则是利用这些资源在网络边缘为用户提供服务的技术,使应用可以在数据源附近处理数据。如果从仿生的角度来理解边缘计算,我们可以做这样的类比:云计算相当于人的大脑,边缘计算相当于人的神经末端。当针刺到手时总是下意识的收手,然后大脑才会意识到针刺到了手,因为将手收回的过程是由神经末端直接处理的非条件反射。这种非条件反射加快人的反应速度,避免受到更大的伤害,同时让大脑专注于处理高级智慧。
边缘计算的优点
Advantages of edge computing
说到边缘计算,我们不得不提到的就是云计算。云计算服务是一种集中式服务,所有数据都通过网络传输到云计算中心进行处理。资源的高度集中与整合使得云计算具有很高的通用性,然而,面对物联网设备和数据的爆发式增长,基于云计算模型的聚合性服务逐渐显露出了其在实时性、网络制约、资源开销和隐私保护上的不足。

图源/网络
相比于云计算,边缘计算可以更好地支持移动计算与物联网应用,具有以下明显的优点:
01、极大缓解网络带宽与数据中心压力
随着物联网的发展,2020年全球的设备将会产生600ZB的数据,但其中只有10%是关键数据,其余90%都是临时数据无需长期存储。边缘计算可以充分利用这个特点,在网络边缘处理大量临时数据,从而减轻网络带宽与数据中心的压力。
02、增强响应的实时性
传统云计算模型下,应用将数据传送到云计算中心,再请求数据处理结果,增大了系统延迟。以无人驾驶汽车应用为例,高速行驶的汽车需要毫秒级的反应时间,一旦由于网络问题而加大系统延迟,将会造成严重后果。而边缘计算在靠近数据生产者处做数据处理,不需要通过网络请求云计算中心的响应,大大减少了系统延迟,千兆无线技术的普及为网络传输速度提供了保证,这些都使边缘服务比云服务有更强的响应能力。
03、保护隐私数据,提升数据安全性
物联网应用中数据的安全性一直是关键问题,调查显示约有78%的用户担心他们的物联网数据在未授权的情况下被第三方使用。云计算模式下所有的数据与应用都在数据中心,用户很难对数据的访问与使用进行细粒度的控制。随着智能家居的普及,许多家庭在屋内安装网络摄像头,如果直接将视频数据上传至云数据中心,视频数据的传输不仅会占用带宽资源,还增加了泄露用户隐私数据的风险。为此,针对现有云计算模型的数据安全问题,边缘计算模型为这类敏感数据提供了较好的隐私保护机制,一方面,用户的源数据在上传至云数据中心之前,首先利用近数据端的边缘结点直接对数据源进行处理,以实现对一些敏感数据的保护与隔离;另一方面,边缘节点与云数据之间建立功能接口,即边缘节点仅接收来自云计算中心的请求,并将处理的结果反馈给云计算中心。这种方法可以显著地降低隐私泄露的风险。

图源/网络
然而,边缘计算并不能替代云计算,而是对云计算的补充,很多需要全局数据支持的服务依然离不开云计算。例如电子商务应用,用户对自己购物车的操作都可以在边缘节点上进行,以达到最快的响应时间,而商品推荐等服务则更适合在云中进行,因为它需要全局数据的支持。
