在人工智能研究如火如荼的今天,似乎也是时候回过头来思考一下模拟计算在未来所具有的意义。当人类已经习惯于通过数字化编程控制机器,也许以神经网络为代表的模拟计算会把对于世界的控制权从人类手中夺走。这是一个值得探究的技术问题,同时也是一个不容忽视的伦理问题!
研究人员通过向人工智能展示不同物体的视频剪辑,以及观看者的脑电波记录,来训练它。这使深度学习神经网络可以学习人们在观看特定类型视频内容时,脑电波活动的常见特征。
人工智能不仅能减少医生的工作量,还能提高医生诊断的准确率,但是对于医疗机构来说,这并不是刚需,加上付费方不清晰,目前没有明确买单方究竟是医院、患者、药企、保险公司还是政府,就是未来需要多方探讨的问题。建议:鼓励医疗AI产品与服务纳入财政收费体系,探索部分收费模式试点。
人力资源专业协会(HRPA)在一份调查报告中指出,52%的受访者回应称,未来5年左右的时间里,他们的企业不太可能采用人工智能或认知计算的方式招员工。同样,大约36%的受访者认为不必大材小用,也有28%的受访者表示公司的领导层会觉得这样的技术在短期内没有必要。
人工智能依赖于专用处理器,补充了CPU。高级CPU模型也无法提高AI培训模型的速度。AI模型需要额外的硬件来解决复杂的数学问题,以提高任务的速度,如面部识别和物体检测。包括NVIDIA,ARM,英特尔和高通在内的芯片制造商将提供专用芯片,以提高基于AI的应用程序的速度。
人工智能背后的人工》一文。这些人每个月拿着4000左右的工资,在电脑前机械的点着鼠标做图片标注,得到的数据最终用于无人驾驶项目。还有很多下到村里收集人脸识别数据的,报酬是洗衣粉或者豆油。即使是科学研究逐渐资本化的今天,也很难想象一门学科可以像这样直接催生新的劳动关系。